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SECTION I 

INTRODUCTION 

The focal plane irradiance distribution of a phase aberrated beam with a 

small phase correlation length can be well represented as the incoherent sum of 

two beams, as discussed in reference 1.    One of the beams consists of the ideal 

diffraction limited beam scaled by an attenuation factor exp (-a^2), where 

V = 4IT2 v* (i) 

and 

^ ■ m Ä2 ' U2/ (2) 

F" is the time averaged variance of the optical path length fluctuations, X is 

the optical wavelength.   The quantity a, is conveniently used to describe the 

"number of waves" of distortion; for instance, for a root mean square (rms) 

distortion of a tenth of a wave, a. = 0.1 and a.2 « 0.4. 

The second beam, which can contain a large fraction of the total energy, 

is related to the shape of the power spectrum of the phase fluctuations; in the 

case where the phase correlation length is small compared to the aperture diam- 

eter, the on-axis imdiance of this beam is very small.   Attendant with this, 

the beam is very large in lateral extent.    Physically, this behavior is ex- 

plained simply as wide angle scattering effect from the small scale phase in- 

homogeneities.    This effect has been studied, for instance, in the investiga- 

tion of photographic film grain characteristics (ref. 2). 

Strictly speaking, the derivation leading to this "two beam" representa- 

tion is only accurate when a,2 $ 0.1.    Furthermore, one can neglect the contri- 

bution of the second beam only under conditions when i   « wt, where l   is the 

1. Hogge, C.B., Butts, R.R., and Burlakoff, M., Applied Optics 13. 1065, May 1974. 

2. Stark, H. Applied Optics 10, 333, 1971. 



AFWL TR-75-153 

correlation length of the phase fluctuation and w. is the output aperture 

radius.    Nonetheless, when these conditions are satisfied, one can obtain a 

useful representation of the focal plane irradiance distribution of an optical 

system as 

<I(r)>= Id(r) exp(-a(()
2) (3) 

where ^(r) is the irradiation distribution of the diffraction limited beam.    In 

fact, for improved laser systems showing nearly diffraction limited operation, 

this representation of the laser irradiance distribution has been found to 

agree well with experimental observations*, a fact that lends some insight into 

the very nature of the residual phase distortions present in the lasers. 

On the other hand, many laser systems operate with output characteristics 

that are strongly nondiffraction limited either for reasons associated with the 

laser design characteristics itself or perhaps for reasons related to the en- 

vironment in which the system must operate.    With a„ larger than a tenth of a 

wave, the expansion leading to the simple interpretation of reference       and 

especially the representation suggested by equation (3), is no longer neces- 

sarily valid.    In particular, it can be shown that under conditions where 

a„ > 0.1, the correlation length of the phase fluctuations becomes an important 

parameter in the complete description of the phase aberrated beam.    Reference 1 

alluded to this dependence in the description of the second beam generated by 

the scattering from the phase inhomogeneities.    In fact, equation (3) is only 

valid for the single special case where the correlation of the phase distortions 

is much smaller than the system limiting aperture diameter.    Retaining the first 

order expansion terms of equation (5), in reference 1, the influence of the 

finite correlation length can be seen to affect the far-field irradiance distri- 

bution through the covariance function, as 

<I(r)>= I0(r) + I^r) (4) 

where 

I0(r) = exp(-o^) Id(r) (5) 

*Dr. David R. Dean, Air Force Weapons Laboratory, Kirtland AFB, New Mexico, 
private communication. 
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I^r) = exp(-a^) f Md(r0) C^(r0) J0 i^f) r0 d r0 (6-a) 

W ' C W Jo (^f) ro d ro (7) 

where M.(r) is the aberration-free output Optical Transfer Function (OTF), 

C.{r) is the covariance function of the random phase fluctuations, f is the 

system focal length, and k = Zv/X.    ^(r) is seen to be precisely the irradiance 

distribution of equation (3); ^(r) will be large compared to I,(r) only when 

a» < 0.1 and when d   « u,, for under this latter condition C,(r) « M.(r) for 

any non-zero value of the respective radial arguments.    Evaluating the on-axis 

irradiance and taking Md(r) constant over the range of integration gives 

1^0) = expl-a^2) K/00 C^r) rd r {6-b) 

where K is a constant depending on characteristics of the optical system, such 

as power, wavelength, and aperture diameter.    The right hand side of equation 

(6-b) must become very small as the width of C.(r) decreases; therefore, 1,(0) 

decreases with decreasing correlation length. 

If a„ < 0.1, but i   is not small compared to the system output aperture 

diameter, equations (4), (5), and (6) can be used to calculate a more accurate 

focal plane irradiance distribution than does equation (3).   The rms wave dis- 

tortion is necessarily constrained to be small because equation (4) is obtained 

through a series expansion of the Modulation Transfer Function (MTF) of the ran- 

dom phase aberrations (assumed in reference 1 to be a Gaussian random variable). 

In terms of the phase covariance function, the random phase aberration MTF is 

given by 

Mp(r) = exp^2 + C^r)) (8) 

The expansion used for equation (4) is then 

Mp(r) ^ [exp(-a^)]   (l + C^r)) (9) 
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and because C.(r) £ a,2  , 0 _< r £«, the expansion will be accurate to within 

10 percent as long as a- _< 0.1 wavelength. 
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SECTION II 

EFFECT OF STRONG PHASE DISTORTIONS AND FINITE PHASE CORRELATION LENGTHS 

To investigate the influence of the phase correlation length under condi- 

tions of strong phase distortions (o. > 0.1), the expansion of equation (9) can 

be continued.   The calculations are significantly simplified if the input opti- 

cal field distribution is assumed to be Gaussian with radial spot size OK to 

the e"2 intensity point.    Also assume for simplicity that the covariance func- 

tion of the random phase distortions is of the form 

C^r) = o^2 exp(-r2M0
2) (10) 

The integral scale size (ref. 3) of the phase fluctuations is defined as 

j Vr) d r   l^r] 
Lo = —c^i    s\rro (ID 

'■o ^ lo (12) 

and is a frequently used measure of the correlation length of the phase fluctua- 

tions.    These assumptions, though restrictive in form, still allow one to inves- 

tigate dependence of the far-field irradiance distribution on the parameters of 

interest, a* and i .    Under these assumptions, the average focal plane irra- 

diance is given by 

I 'krr \ 
<I(r)>= ^1   exp(.a^) /   exp(-r2/2a.2) exp^r)) J0 (-^j r0 d r0 (13) 

3.    Tatarski, T.A., Wave Propagation in a Turbulent Medium, Trans, by R.A. 
Silverman, Dover Publications, Inc., New York. 
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where 

27r oil P„ 
I0 = id(o) =        t   0 

X2 f2 (14) 

and 

P   = total output power. 

By continuing the expansion of M (r) in equation (9), it is easy to show that 

<I{r)>= exp(-a^)I0 fa -^p [jl^j exp    -^ • \^~j (15) 

where R = IT—l , and w* = I—I is the focal plane spot size of the diffraction 

limited GausSian beam. 

The average far-field irradiance distribution is seen to be the incoherent 

sum of Gaussian beams with spot size 

2 2 

n       f (1 + 2nR2) (16) 

and amplitudes 

„ 2n 
a, i 

An =   n!    *  (l+2nR2) (17) 

These spot sizes increase monotonically with n while the amplitudes can initial- 

ly increase, but they will ultimately decrease with increasing n. 

Equation (15) reduces as it should to the following limiting forms: 

Limit   <I(r)>= Id(r) (18) 

and 

Limit   <I(r)> = exp(-a.2) Id(r) ,    . 
s,o -> o T y    ' 

10 
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where 

Id(r) = I0 exp (-ZrVeoj) (20) 

The following useful power-in-the-bucket information can be obtained by inte- 

grating equation (15): 

P(r) = P0 }l-exp{-a^)    l!ir_exp[-|iÜT5lpTJ} {21) 

The parametric dependencies of <! (r)>and P(r) are shown in figures 1 

through 7.    The purpose of these figures is to define under what conditions 

equation (4) will yield an adequate solution for the irradiance distribution. 

Furthermore, in the case of strong phase fluctuations, a» > 0.1, it is of inter- 

est to know how a finite correlation length will affect the irradiance distri- 

bution. 

In figure 1, the on-axis relative irradiance is plotted versus the ratio 

of the transmitter spot size to the phase correlation length.    Thus, for large 

abscissa values, the irradiance should approach the limiting value exp(-a.2). 

While this is the case, it is clear that for a» > 0.1, the intensity can be a 

strong function of the relative size of the correlation length (R = "uM ).    The 

dependence is stronger for larger values of a.; but even for a« = 0.2, a factor 

of approximately two difference in the peak intensity is observed for an R = 1 

as compared to R = 2.    Clearly for a^ > 0.1, an accurate prediction of the 

maximum irradiance value can only be obtained if an estimate is known for the 

phase correlation length -- because the simple prediction of equation (3) is 

too pessimistic. 

Figures 2(d) to (e) are plots of the irradiance profiles for different 

selections of the parameters c^ and R.   For R « 1, the nature of the optical 

distortion is like simple beam jitter.   This can be easily seen by noting that 

when R « 1, C.(r) can be approximated over the effective region of integration 

in equation (13) by a first order expansion in r, with the result that 

<I(x0,y0)>= // M(x,y) exp ^ (x2+y2)l exp L ^ (xx0+yy0)j 
dx dy       (22) 

11 
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Hl 
Figure 1. Reduction in Relative Maximum Average Irradiance for Various 

Amounts of rms Phase Distortion (c^) Versus the Ratio of the 
Transmitter Spot Size to the Phase Correlation Length 

12 
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i-k] 
(a) a, = 0.1 wavelength 

Figure 2. Relative Irradiance Profiles for Different Amounts of rms 
Phase Distortion (c^) Versus the Relative Phase Correlation 
Length 

11 
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W 
(b) a, = 0.2 wavelength 

Figure 2. Relative Irradiance Profiles for Different Amounts of rms 
Phase Distortion (a^) Versus the Relative Phase Correlation 
Length 

14 
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fe] 
(c) a0 = 0.3 wavelength 

Figure 2. Relative Irradiance Profiles for Different Amounts of rms 
Phase Distortion (a^) Versus the Relative Phase Correlation 
Length 
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m 

[irl 
(d) a. - 0.4 wavelength 

Figure 2. Relative Irradiance Profiles for Different Amounts of rms 
Phase Distortion (a») Versus the Relative Phase Correlation 
Length 

1 £ 
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1.0 c 

0.0       0.5 

fe] 
2.5       3.0 

(e) 0« = 0.5 wavelength 

Figure 2. Relative Irradiance Profiles for Different Amounts of rms 
Phase Distortion (aj Versus the Relative Phase Correlation 
Length 

17 
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1.0 n 

ra o.5 

0.0 

fe] 
(a) Og = 0.1 wavelength 

Figure 3.  Integrated Relative Power Profiles for the Same Cases Shown 
in Figure 2 

ifl 
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1.0 i- 

m o« 

0.0 

(b) a0 = 0.2 wavelength £ 

Figure 3. Integrated Relative Power Profiles for the Same Cases Shown 
in Figure 2 

IQ 
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(c) a^ = 0.3 wavelength 

Figure 3. Integrated Relative Power Profiles for the Same Cases Shown 
in Figure 2 

70 
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mo-5 

(d) o^ = 0.4 wavelength 

Figure 3. Integrated Relative Power Profiles for the Same Cases Shown 
in Figure 2 

21 



AFWL TR-75-153 

5.0 

(e) a£ = 0.5 wavelength 

Figure 3. Integrated Relative Power Profiles for the Same Cases Shown 
in Figure 2 

22 
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II.WIJ 

Figure 4. Relative Accuracy of the First Order Prediction for the 
Maximum Average Irradiance for Various Phase Distortions 
(aj and Relative Phase Correlation Length iuJlJ 

i    I 23 
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10' 

10' 

10' 

10 0 

0: = .5 

m 
Figure 5. Relative Accuracy of the Second Order Prediction for the 

Maximum Average Irradiance for Various Phase Distortions 
(an) and Relative Phase Correlation Length {uji-) 
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AFWL TR-/5-153 

lOr 

o 
o 

o 

m 
Figure 6. Ratio of Second Order to First Order Prediction for the 

Maximum Average Irradiance for 0,, = 0.1 and 0.2 wavelength 
Versus the Relative Phase Correlation Length ((Vfc ) 

i ! 
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NJ   I01 

lö' 

m 
(a) N2 versus WJl ) 

Figure 7. N is the Number of Times Diffraction Limited that the Focal 
Plane Irradiance Distribution Becomes When One Uses Power in 
a Fixed Bucket as the Definition 

26 
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w 

al 

(b) N2 versus (a«) 

Figure 7. N is the Number of Times Diffraction Limited that the Focal 
Plane Irradiance Distribution Becomes When One uses Power in 
a Fixed Bucket as the Definition 

57 
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It can be shown that the OTF for simple telescope jitter is 

MjU.y) = exp k2 e^ (x2+y2) (23) 

where QT is the 1-sigma line-of-sight, two-axis jitter variance.    Comparing 

equations (22) and (23), the effect of the large scale phase aberrations is to 

provide a source of beam jitter.    Then 

Mi^) 
V (24) 

where equation (1) has been used.    The strength of the effective jitter de- 

creases with increasing correlation length and increases with the magnitude of 

the phase variance.   A typical value for e7" can be obtained for a„ = 0.2, 

X = 10.6 ym, and I   = 0.5m equal to 

\/F~ 7 yrad 

The irradiance distribution takes the form 

<I(r)> Ir 

l + 
k2^t 

exp 2ri 
k2 e7 ■•2 

l + Ü). 

(25) 

or using the definitions of w- and I  , gives 

<If(ry> V0 exp   [-1^.] 
(26) 

where 

- -2Po -i h\ o ~ TT((^)2 ~ lo\^ I (27) 

oo 
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((4)2 = (w2 + 2 f2 F) (28) 

As the relative size of the phase correlation length is decreased (R in- 

creasing), the focal plane irradiance distribution transitions from one domi- 

nated by narrow angle jitter, through intermediate stages, and finally to a 

distribution that is dominated by wide angle scattering.    This is evidenced by 

the apparent leveling of the irradiance curves at large radial positions repre- 

senting an elmost constant background illumination that is characteristic of 

extremely wide angle scattering.    The central portion of these curves is seen 

to have a shape that is much like a Gaussian curve; this result was discussed 

earlier in this report [equation (4)], as well as in reference 1.    These curves 

represent the case where the beam is composed of two beams; one is simply an 

attenuated version of the original beam, while the second arises from a very 

widely scattered beam.    In this situation the beam can be approximated well by 

<I(r)>= Id(r) exp(-a 2) (29) 

situation, and the relative maximum intensity reduction is exp(-a.2), as com 

The width of the beam (to the e"2 intensity level) is clearly just u)f for this 

situation, and the relative maximum intensity redi 

pared toloiS/ui + 2 (F f2i  for the preceding case. 

These contrasting situations represent the two extremes obtained in the 

limit of very small and very large relative phase correlation lengths (wt/£ )   , 

and clearly show the effect of phase correlation length on the far-field irra- 

diance distribution. 

is so severe   I-^r) exP(-aA2) t,iat a^ the energy appears in the second beam at 
very widely scattered angles.    When the phase distortions become this strong, 

one can use an altered picture for the propagation process.    Since expl-a 2 

(l-e~r ' 0)J will be very small for almost all values of r > 0 when a 2   is 

large, the exponential can be expanded and again equation (22) is obtained.    In 

other words, all the energy scattered into the incoherent second beam can be 

visualized at a very large angular jitter source again given by equation (24). 

This is true except when the correlation length is much, much less than the 

aperture diameter.    Letting a* = 0.5, I   = 0.25 m, and X = 10.6 ym, the result 

is 

?q 
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'ST 6^ =; 45 yrad 

For apertures on the order of this I   and larger, the far-field angular spot 

size is on the order of 12 p radians and smaller.   Therefore, this effective 

jitter is very large, and acts to spread the beam to a size several times larger 

than its ideal diffraction limited size. 

In figures 3(a) through (e), the irradiance curves have been integrated 

to give power versus bucket radius curves.    The preceding comments regarding 

the irradiance curves are also appropriate to bucket radius curves.    Of particu- 

lar interest, note that for l^j >^ 3, the power contained in I—I = 1  is 

almost the same, indicating that for all these cases the central portion of the 

beam is approximately the same.    Again this shows the applicability of the two 

beam model described in reference 1.    It also shows that for a wide range of 

values of L-i-1 and cr», equation (29) is a useful and accurate representation 

of the beam.    Of course, for the larger values of a«, this concept begins to 

fail, and its range of usefulness is best studied with the figures discussed in 

the following paragraphs. 

In figure 4, the ratio of the on-axis intensity of equation  (15) to the 

first term in the expansion, which is simply equation (3), is shown for differ- 

ent relative phase correlation lengths and strengths of phase distortion.    When 

this ratio is close to unity, the approximation of equation (3) provides an 

accurate estimate of the maximum irradiance.    Suppose a ratio of 1.5 is set as 

an acceptable upper bound to the required accuracy.    Then, except for the case 

where er« - 0.1, smaller and smaller correlation lengths (for constant a„) are 

required to satisfy this criterion.    For example, with jytj   _> 5, the 

criterion is satisfied only when a« < 0.3. 

Figure 5 is a plot of the ratio of the on-axis intensity of equation (15) 

to the sum of the first two terms in the expansion (equation 4) versus the 

relative size of the phase correlation length for different strengths of phase 

distortion.    A comparison of these results with the results of figure 3 indi- 

cates the degree of improvement obtained for the prediction of the intensity 

when a first order correction is made to account for the effect of a finite 

correlation length.   The most significant improvement occurs for l-g-M < 1, as 

might be expected.    For instance, when a» = 0.2 and l_L| = 1, the accuracy 

criteria are obtained (as defined previously) by the second order expansion, 
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while the simpler first order expansion fails to meet the error condition. 

Also, in this situation, the case of a   = 0.3 exceeds the accuracy criteria 

for (-jp-)il 3, as compared to (u^/l 5 for the first order expansion. 

A more sensitive representation of the difference between the first order 

and second order approximation can be obtained if the simple ratio of these 

quantities is plotted as a function of relative phase correlation length. 

Figure 6 shows this result for a^ = 0.1 and 0.2.    Clearly, while the difference 

is neqliaible for very small relative correlation lengths (ir-1 U> "it can ^e 
(0)4- \ \   o / 

■j-^ 11.    This implies that, in some 

instances, much can be gained by using the second order expansion of equation 

(4), rather than the simple first order expansion of equation (3).    For a^ > 

0.2, the differences in the predicted irradiance values will be even greater, 

of course. 

In figure 7(s), the power contained in a bucket of radius w* (normalized 

to the total power) is plotted as a function of the relative phase correlation 

length for different strengths of phase distortion.    Figure 7(b)  is a plot of 

the same data, simply reversing the dependence of the correlation length and 

strength of phase distortion.    The ordinate of these graphs is labeled with 

N2, N representing the number of times that the focal plane spot size of the 

beam is diffraction limited.    This is a frequently used definition of the non- 

diffraction limited nature of optical beams.    A second definition frequently 

used specifies the ratio of the radius of a power bucket needed to collect a 

prespecified amount of the total  transmitted energy to the bucket radius needed 

for the diffraction limited beam.    While the definition for N2 used in figure 

7(a) shows some dependence on the relative size of the phase correlation length, 

this dependence becomes weaker with increasing l^—j .    On the other hand, the 

second definition of N2 just discussed would show (for a„ > 0.1) a strong 

dependence on the relative phase correlation length.    The definition used for 

figures 7(a) and 7(b) is usually a better description of beam quality of an 

optical  system.    Other considerations, such as the impact of beam shape on ma- 

terial effects enters into this conclusion as well.    Finally, with this defini- 

tion of N2, a strong dependence on a^ is observed, as shown in figure 7(b). 

Hence, a£ should be as small as possible in any practical system design. 
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SECTION III 

SOME OBSERVATIONS APPROPRIATE TO THE RANDOM PHASE SCATTERING PROCESS 

Additional insight can be gained about the nature of the random phase 

scattering process by first using a generalization of the results of equation 

(13) 

^VV^-I^^ ' Vx'y) • e L        0-l dx dy   (30) 

and then noting that 

The following equation can then be written 

{i | (xx0 + yy0) 
x.y)  • e    L J dx dy (31) 

/ i, \2     a. +h j (xx   + yy ) 
V^ = l^f)   f-t> l^o^ e    L J dxo ^o (32) 

which, when substituted into equation (29), results in 

<I(x0.y0i>= /jf Id(x,y) Q(x0 -x, y0 -y) dx dy (33) 

where 

/ i,  \2     co " 1 ? (xox + VM 
dx0 dyo (34) 

The result is that the focal plane irradiance distribution is the convolution of 
the ideal diffraction limited irradiance distribution with the function Q(x,y). 
This latter function is the Fourier transform of the random phase aberration 
OTF. 
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In the limit of very small aberrations, a0 -► 0 and also M (r) approaches 
x, p 

a constant value of unity.    For that case, Q(x,y) is a delta function at 

x=y=0, with the obvious result that<^ I(x0,y0)^> = LCXQ^Q). 

For non-zero random phase aberrations, the OTF can be written as shown in 

equation  (8).    A typical form for this equation is shown in figure 8.    The 

asymptotic limit of M (r), for large r, is exp(-a 2).    Consider writing M (r) 

as 

Mp(r) = expC-a^2) + (1  - expl-a^2)) f (r) (35) 

where f(r) is a function that approaches zero for large r.    The shape of f(r) 

resembles the OTF for simple jitter which was seen in equation (23) to be 

Gaussian.    Taking the transform of M (r) in equation (34) the following result 

is obtained 

q(x,y) = exp(-a())
2) 6(x.y) + (1  - expt-cy5)) F(f(r)) (36) 

where F(') denotes the Fourier transformation and where 6(x,y) is the Dirac 

delta function.    Conceptually, it is useful  to consider the two functions of 

equation  (35) as synthetic apertures superimposed on the original telescope 

aperture function.    As such, the first function, exp(-a,z), clearly has no 

radial  limiting effect, and is simply a source of power attenuation.     Its 

Fourier transform is a delta function and thus does not change the spatial 

characteristics of Ij(r) when the convolution in equation (33) is performed. 

The second function is the product of a simple energy extinction term 

1 - exp(-o,2)    with a "bell-shaped" function that asymptotically approaches 

zero as r -•■ o°.    A synthetic aperture function of this type will produce a 

transformed function whose width is inversely proportional to its initial width, 

and whose central amplitude is proportional  to the area of f(r).    For instance, 

if the synthetic aperture function is very narrow compared to the effective 

physical  aperture of the output beam, then the projection of f(r) in the focal 

plane of the optical system [i.e., the Fourier transform of f(r)] will be very 

wide compared to the width of the ideal diffraction limited pattern,  Mr). 

This will  usually be the case when the correlation length of the phase fluctua- 

tions are smaller than the output aperture dimension.    Convolving these two 

functions with each other will produce a beam that is spread more than either 
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F(f(r)) or Id(r). 
On the other hand, if f(r) is wide compared to the laser beam output aper- 

ture size, then its projection in the focal plane will be smaller than ^(r). 

If f(r) is sufficiently broad, or in other words, if the phase fluctuations are 

highly correlated over dimensions the size of the output aperture, then the 

Fourier transformed function will be so narrow that when it is convolved with 

IJr) in equation (33), it will act very much like a delta function.    Only 

slight spreading of the original diffraction limited function will occur. 

The width of f(r) is thus very important in describing exactly how the 

second term in equation (36) will affect the spreading of I^r) by the convolu- 

tion in equation (33).    While to some extent, the width must be closely related 

to the correlation length of the phase fluctuations, it is also a function of 

the variance of the fluctuations. 

1.    EXACT SOLUTION 

If the random phase OTF is expanded in the same manner as in section II and 

assumes a Gaussian covariance function, such as equation (10), then the 

following result is obtained for equation (33): 

<l(x,y)> =   £fi   *    „; • |ld(x.y)*In(x.y)J (37) 

where "*" means convolution, and where 

'nC-' = ¥k - eXP(" I1) (38) n 

^ = 2n 
(^) (39) 

Note that I0(r) = 6(x,y) in equation (38). Each term in the series solution is 

the convolution of ^(r) with a Gaussian function. Because the Fourier trans- 

form of a Gaussian function is itself Gaussian in shape, equation (23) can be 

inserted into equation (34),and also each term in equation (37) represents the 

convolution of the diffraction limited focal plane distribution with a source of 

angular jitter given by 

•»e; 
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4n 
k2^ (40) 

If it is assumed that 

-(2r2/a)i) 

and 

"f = (I lt)
2 

then the operations specified by equation (37) will produce an infinite series 

of Gaussian functions, each successive function having a transverse size larger 

than any of the preceding functions.    The focal plane distribution is thus built 

up as the sum of independent Gaussian beams, all of whose respective spot sizes 

are larger than the original beam size of cof.    This result was earlier seen in 

equation (15). 

Writing equation (37) as 

Eexp(-a ')a.        r 1 
s,     u n.  ti   *      [id(x.y)*in(x.y)J 

the second term clearly describes the effect that the function f(r) of equation 

(35) has on the convolution of equation (33).    For this approach then a picture 

is obtained that describes this part of the scattering process as a complicated 

multi-jitter type convolution.    But by equation (38), the respective jitter com- 

ponents are characterized only by the random phase correlation length, with no 

dependence on the phase variance. 

2.    SIMPLIFIED QUANTITATIVE RESULTS FOR STRONGLY PHASE ABERRATED NONDIFFRACTION 
LIMITED BEAMS 

While the results developed thus far for the description of the far-field 

irradiance distribution of a random phase aberrated optical system are exact 

within the limitations of the assumptions and approximations made here, they do 

not provide particularly useful insight into the dependence of the important 
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characteristics of the beam on the phase variance a.2 and the phase correlation 

length.   This is true even if a few of the higher order terms are kept in equa- 

tion (15),although an improved estimate of the far-field irradiance characteris- 

tics does result by this procedure (figures 4, 5    and 6). 

The scattering process can be visualized better by taking the approach that 

the function f(r) in equation (35) can be approximated by a Gaussian function 

of unit amplitude and some characteristic width.    Recalling that the OTF for a 

system jitter source is Gaussian also, this approach is tantamount to treating 

all the scattered energy as a random tilting, or jittering of the beam.    The 

total process then has the following interpretation.    First, a certain fraction 

of the total beam energy is propagated completely unaffected by the phase dis- 

tortions.   This fraction of the total energy is given by exp(-a.2) (equation 

36)     The remaining fraction of the energy that is scattered (l - exp(-a,2)), 

is smeared or spread by a simple random jittering process.    The angular spread 

associated with the jitter is related to the effective width of f(r) as defined 

by L.    Then, by writing 

f(r)*exp   -(£-) (41) 

and recalling the form of the OTF for pure telescope jitter (equation 23), the 

result is 

(try (42) 

As the width of f(r)  increases (increasing L), the angular spread due to this 

synthetic jitter source decreases.    Therefore a process that produces a large 

effective width of f(r) will only slightly spread the remaining (1 - exp(-a 2)| 

fraction of the energy. 

Clearly the width of f(r) can be defined in many ways. One possible defini- 

tion of an integral scale size was given in equation (11). That definition will 

be used here.    Using equations (8) and (34), gives 

exp(-a 2) / \ 

W ' 1.e,p(V>   ""(V^-1) (43) 
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Assuming a Gaussian covariance function of the form 

the integral scale size is computed to be 

2 a-r
2Mo2 

<P 

exp(-a 2) 
L. =  2— 

l-expC-o^2) 

-ss,        2n 

•T- »o S ^- 2       a n=l    . -v/— n! VT (44) 

where the exponential has been expanded in equation (43).    Assuming the form of 

equation (41) for f(r) results in 

L = 
exp(-a,2) £ a^n   L 

(45) 

Consider the form of L for small phase distortions, then 

L = l    (l-o,2) 
0 v  (|) ' (46-a) 

This limiting form shows that the width of f(r) is directly proportional to the 

phase correlation length but that with increasing phase variance L decreases. 

A slightly more accurate form may be obtained by not expanding exp(-a 2).    One 

gets 

-t 
exp(-0^) 

-exp(-a^)ro^ 
l~ a. 

(46-b) 

Keeping second and third order terms in the series expansion, gives 

-{-, 
exp(-0^ 

-exp(-o(J)
2)^ 

Jo W * (47) 

/ exp(-a.2) \ / a,1* a,6  \ 

\l-exp(-a 2)/     0     \*       ZVT     6V3/ (48) 

From equations (45) and (46), it is clear that L is always less than i   for any 
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non-zero phase variance.    However, for a fixed I   and a,2, the successive ap- 

proximations to L(L,, L2. L-, etc.) monotonically increase.   Therefore the use 

of one of these values for L will make the angular spread of this energy larger 

than it actually is (equation 42), yielding a conservative (low) estimate for 

the maximum irradiance of the beam. 

If the diffraction limited irradiance distribution is again assumed to be 

Gaussian, the scattered energy will also have a Gaussian form. 

,(r) =  ri-exp^o*)]   • I   / ^ V exp/- * 
2 ez f2 

(49) 

e7" is defined in equation (42). The unscattered energy will have the form 

Iu(r)= exp(-o^). I0exp^) ^ 

An example of a typical far-field pattern is shown in figure 9.    This result 

describes the far-field irradiance pattern as the sum of two Gaussian beams of 

different relative amplitudes and widths.    Though simple in form, this approxi- 

mation physically describes the salient features of the scattering process.    For 

instance, if the phase variance is small (a„ < 0.1) and the phase correlation 

length is much less than a)i,so that 

L^V^1 (51) 

then Is(r) « I (r) for all  values of r, and the resulting irradiance distribu- 

tion will be the same as the diffraction limited distribution multiplied by a 

sea' 

(3), 

scale factor exp(-a 2).    This is precisely the situation described by equation 

On the other hand, if a0 is large, so that exp(-0 2) « 1, then I (r) is 

very small and may be negligible compared to Ic(r), if L is not too small.    If s 
I   » u)i, then at least for some range of values of a.2, L will be greater than 

üv.    Physically, the scattering process should resemble a general smearing of 

the beam.   This is exactly the result that equation (49) predicts. 

Thus, this formulation provides a lucid picture of the nature of the 
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INTENSITY 
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\<Ilr)>« Iu(r)+I$(r) 

RADIUS 

Figure 9. Typical Far-Field Irradiance Profile of a Phase Aber- 
rated Nondiffraction Limited Beam Composed of the Sum 
of Iu{r) and Is(r) 
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scattering process as a function of the important parameters.    In addition, one 

of the approximations for L  (equations   6 to 48) can be used to obtain an esti- 

mate of the focal plane irradiance distribution.    While a few terms in the 

exact solution (equation 15) could also be used to estimate the focal plane 

distribution, the representation soon becomes cumbersome; furthermore, every 

one of these approximations fails to conserve the total energy in the beam. 

The results obtained when the approximations to L are used can be seen in 

figures 10(a) through (c), where the on-axis intensity is plotted versus 

ij~\ for different phase variances.    In figure 11 the same data are plotted, 

when L is computed from equation (45).    Clearly, for small variances, the 

various approximations to L yield reasonably good estimates.    However, it is 

also clear that for the larger of the variances, more terms are needed in the 

approximation to L. 

Of course, these observations are of little consequence if this approximate 

method does not agree well with the exact analysis of section II.    The agree- 

ment of the two methods can be judged by comparing the curves of figure 11 to 

those of figure 1, where the same data has been plotted for the exact solution. 

Plotting the ratio of these curves in figure 12, then over the range of the 
cot 

parameters studies, 0 _< o^ _< 0.5, and 0 ££•*-_< 5, the two results differ almost 

by 5 percent.    The conclusion is that the fraction f(r)  (equation 43) can be 

represented very well by a single Gaussian function of the form of equation (41) 

where L is defined by equation (45). 

In addition, because L is a smoothly varying function of I   and CL (see 

figure 13), one can very easily calculate the effect of phase aberrations on a 

Gaussian beam.    This was done in equations (49) and (50).    The peak amplitudes 

and relative shapes (e.g., figure 9) can easily be calculated once the effec- 

tive correlation length L has been determined. 

By contrast, to obtain similar information from the exact analysis of equa- 

tion (15), the entire series must be completely summed for each value of r, 

a  , and i .    Virtually no intuitive information about the nature and shape of 

the far-field irradiance distribution can be gained beforehand.    Therefore, one 

of the major conclusions of this report is that the model developed by repre- 

senting f(r) in equation (43) by a Gaussian function is an accurate way of 

determining the characteristics of nondiffraction limited beams and in addi- 

tion has an enhanced utility because of the ease with which important quantities 

can be estimated with a minimum of computational effort. 
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(a)   li scale approximation 

Figure 10. Reduction in Relative Maximum Average Irradiance Using the 
Modified Two Gaussian Beam Model with the Different 
Approximations for the Scale Size L for Different rms Phase 
Distortions and Relative Correlation Lengths (wt/S. ) 
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(b)   L2 scale approximation 

Figure 10. Reduction in Relative Maximum Average Irradiance Using the 
Modified Two Gaussian Beam Model with the Different 
Approximations for the Scale Size L for Different rms Phase 
Distortions and Relative Correlation Lengths {wtA0) 
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m 

m 
(c)   L3 scale approximation 

Figure 10. Reduction in Relative Maximum Average Irradiance Using the 
Modified Two Gaussian Beam Model with the Different 
Approximations for the Scale Size L for Different rms Phase 
Distortions and Relative Correlation Lengths (w^/O 
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Figure 11. Reduction in Relative Maximum Average Irradiance Using the 

Modified Two Gaussian Beam Model with the Exact Calculation 
for the Scale Size L for Different rms Phase Distortions and 
Relative Correlation Lengths (wtA ) 
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Vo) 
Ilo) 

Figure 12. Ratio of the Exact Calculation for the Maximum Average 
Irradiance to the Modified Two Gaussian Beam Calculation 
as a Function of Phase Distortion (aj and Relative 
Correlation Length (ut/0 

S     ! 
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W 

Figure 13.  Dependence of Relative Scale Size (L/iL) on the rms Phase 
Distortion on 

The spatial characteristics of this representation are shown in figures 

14(a) through (e) and can be compared with the exact solution in figures 2(a) 

through (e).    Again there is significant agreement between the two methods. 
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(a) a„ = 0.1 wavelength 

Figure 14. Relative Irradiance Profiles for Different Amounts of 
rms Phase Distortion and Relative Phase Correlation 
Length (^t/Jl-) as Calculated Using the Modified Two 
Gaussian Beam Model 
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[*■] 
(b) a^ = 0.2 wavelength 

Figure 14. Relative Irradiance Profiles for Different Amounts of 
rms Phase Distortion and Relative Phase Correlation 
Length (üWäQ) as Calculated Using the Modified Two 
Gaussian Beam Model 
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(c) a. = 0.3 wavelength 

Figure 14. Relative Irradiance Profiles for Different Amounts of 
rms Phase Distortion and Relative Phase Correlation 
Length (utMo) as Calculated Using the Modified Two 
Gaussian Beam Model 
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(d) a. = 0.4 wavelength 

Figure 14. Relative Irradiance Profiles for Different Amounts of 
rms Phase Distortion and Relative Phase Correlation 
Length (wt/Ä.0) as Calculated Using the Modified Two 
Gaussian Beam Model 
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w 
(e) a^ = 0.5 wavelength 

Figure 14. Relative Irradiance Profiles for Different Amounts of 
rms Phase Distortion and Relative Phare Correlation 
Length (a)t/Jl0) as Calculated Using the Modified Two 
Gaussian Beam Model 
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SECTION IV 

SYSTEM JITTER AND CASCADED RANDOM PHASE DISTORTIONS 

1.    SYSTEM JITTER 

Frequently, optical systems will contain sources of real random jitter. 

These can arise, for instance, from the telescope gimbals that control the 

pointing and tracking functions.    Another source of beam jitter is mirror vibra- 

tions in optical trains. 

While the preceding work investigated the optical distortions caused by ran- 

dom phase aberrations on diffraction limited beams, the inclusion of an inherent 

system jitter is very simple.    The basic equation for the average irradiance 

distribution  [equation (30) for the general case and equation (13) for the 

cause of a Gaussian beam] is modified in the following way 

^VV^" ^iMd(x'y)*Vx'^,Mj(x'y) expf-i ^ (xx0+yyo) dx dy 
(52) 

where the MTF for simple jitter is 

Mj(x,y) = exp 
k2 e? 1 
-p-U2 +y2)J (53) 

Particularizing to the case of an ideal Gaussian beam, the pertinent equations 

in the preceding sections must be revised as follows: 

Define 

n2 = (2 f2 ey/a)2) (54) 

where w* is the diffraction limited focal plane spot size of the ideal Gaussian 

beam, f is the system focal length, and öT is the one-sigma line-of-sight 
J 

jitter.   The equations (15), (21), (49)   and (50) can be written as follows: 

Equation (15): 

2n 
■2r2 1 ^r TWWJ 

exP [5 ̂     (l+fi2+2nRz) 
(55) 
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Equation (21) 

P(r) = Pf 

2n 
1 " **rt-^Z) i^-|rexp 

Equation (49) 

■2r2 1 
^~   (l+n2+2nR2) (56) 

(r) =   l-exp(-a,2) •    I0 —-1 zr" 
y ^   /        0\(4(l+n2)+2e2f2/ 

• exp 
^(l+n2)+2e2f2/ [a)2(l+f22)+202f2 

.2r2 

(57) 

where 92 is defined by equation (42). 

Equation (50) 

Iu(r) = exp(-a(j)
2)T^r- exp 

-2r2 

0)2(1+02) 
(58) 

The sensitivity of the results obtained in the previous sections on inherent 

system jitter can readily be studied with these few simple modifications. 

2.     CASCADED RANDOM PHASE DISTORTIONS 

Many optical systems are composed of sequential optical components as well 

as environmental sources of optical distortions.    Each component or process 

will have its own characteristics, and in the most general case, can present 

a formidable problem in the estimation of the total  integrated system perfor- 

mance.    If the sources of phase distortion are generated by independent random 

processes and if all parts of the entire optical train are well within the 

near-field of any of the phase distortions, then the average far-field irra- 

diance distribution will be given by 

<I(r]> = [[ Md(r).M.(r). (xxr + yy0) dx dy (59) 

where M.(r) is the jitter MTF, M.(r) is the diffraction limited MTF, and Mn(r) 

(n=l,2...N) are the MTF's for the separate sources of optical phase distor- 

tion.    Again, for a Gaussian random process, 

54 



AFWL TR-75-153 

Mn(r) = exp „^ (60) 

Define an integrated system MTF as 

Ms(r) = exp 
n=l    yn     n=l    Tn (61) 

If the accumulated phase variance is less than a tenth of a wavelength, 

equation (60) can be expanded, resulting in a modified version of equation (4): 

I0(r) exp 
n=l   Tn 

I» (62) 

I^r) exp! 

N 

I   j. L 7 Md(r0)M (r0) C    (r) J 
^=1    vn /    n=l o J ^n o(^) 

rodro 
(63) 

The irradiance distribution for the case of an initially Gaussian beam and the 

Gaussian covariance functions are then 

<I(r)>= e xp 

N 

n=l    MI 
I0   exp 2r2      1 

(JOJ (1+fi2) [THF) 

N a<(>n 
+    Z (Ufi2+2R2)    * exp 

n=l n 

2ri 1 
|    *   (l+fi2+2R2) to (64) 

where Rn = (wt/Ä,0 ). 
n 

In terms of the approximate representation described in section 111.2, a 

similar development can be pursued.   The first order estimate for the Gaussian 

integral scale size [equation (46-b)] now becomes 

tc; 
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-er N 

a2 

L    =     e 'H ln   o2. 1 ^       iS   0n   ^n 
1 - e (65) 

where 

N 

n=l   ^n (66) 

Extension of this approach, as well as the approach leading to equation 

(64) for higher order approximations, rapidly becomes cumbersome, and an alter- 

nate (but approximate) method described below may be more useful. 

For convenience, assume that all the covariance functions of interest are 

Gaussian with variance a?    and correlation length lQn.    In equation (61) the 

function defined here as 

N 

C(r) = E C.    (r) (67) 
n=l    MI 

resembles in some respects a covariance function itself.    Its variance is given 

by equation (66), and as r -»- «>, C(r) -*■ 0.   The shape of C(r) as a function of 

r is not necessarily Gaussian, however.   Nonetheless, an effective width of 

C(r) can be defined.    For convenience, again the integral scale size defined in 

equation (11) can be used and then C(r) represented by a Gaussian covariance 

function, so that 

c(r) = 5. exp |-.(|L-j 
(68) 

where 

N 

1 "?•£*"   0" (69) 
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The effective correlation length, T, is seen to be an average of the 

individual correlation lengths, each weighted by its respective variance.   Thus, 

for instance, if a process has a large correlation length, but a small variance, 

it contributes very little to the effective overall correlation length. 

Definitions (68) and (69) can now be used to go through any of the pre- 

ceding analyses.   But it should be pointed out that the validity of this ap- 

proach has not been tested.    To do this would require a detailed analysis of 

many specific systems.    Nonetheless, this approach does offer some insight into 

the dependence (and nature) of the system performance on different and discrete 

sources of optical distortions. 

The assumed form of the covariance function [equation (68)] and the defini- 

tion of the effective correlation length [equation (69)] should approximate the 

real situation quite well when the true covariance function r.(r) can be repre- 

sented well by a single Gaussian function.    There is a problem of practical 

importance, however, where this approach does not adquately represent the real 

situation.    Consider figure 15.    Suppose one source of phase abberations is 

characterized by a very small correlation length l]p >> l)-    It is depicted by 

MWr) in figure 15.   The second source of aberrations is assumed to have a 

large correlation length i-^- « 11, represented by M2(r) in figure 16.    It is 

clear that the best representation of M1.(r) = Mi(r)'M2(r) is simply exp(-a? )• 

iMr).    In other words, fMr) is best interpreted as a source of energy extinc- 

tion due to the wide angle scattering it engenders.    Equation (69) will define 

an effective correlation length equal to 

o2.    ll   + ai   8-        /    a2. 
(pi      Ol $2      02        / <P2 

I. 
<   + ol K   + a*   ' 02 

(pi        4)2 \ ?i       ? 

which for a.    » a,    gives the result that i - ln .    Clearly in this limit, no 

accounting whatsoever will be obtained for M^r).   The problem, of course, is 

that M (r) in this instance cannot be represented very well by just a single 

Gaussian function of the form of equation (68). 
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SECTION V 

OPTICAL SYSTEM MODELS 

There are a number of computer models in use now that attempt to describe 

total high power system performance characteristics in a consistent and inte- 

grated fashion.    Necessarily, by the magnitude and complexity of such a problem 

in the development of these codes, the designers have had to make numerous sim- 

plifying assumptions.   One frequently used approach, for instance, is to ap- 

proximate the focal plane irradiance distribution of the diffraction limited 

system by a Gaussian beam, with a modified amplitude and spot size (ref. 4). 

Most optical systems, however, operate with less than ideal amplitude and phase 

output characteristics.   The corresponding focal plane irradiance distributions 

are therefore less than diffraction limited as evidenced by reduced peak inten- 

sity and spot spreading.    For small scale phase aberrations, wide angle scat- 

tering effectively removes a fraction of the usable energy from the far-field 

spot.    Larger scale phase aberrations reduce the maximum irradiance by .   reading 

the beam. 

Whether the actual focal plane distribution of the beam is spread or 

widely scattered depends, of course, on the nature of the output aberrations, 

and for any given situation, it is reasonable to say that both spreading and 

scattering will be present simultaneously.    In general then, far-field patterns, 

such as the one shown in figure 9, may be more characteristic of actual random 

phase aberrated beams. 

The formalism developed in section III.2 described the nondiffraction 

limited beam as the sum of two beams.    For the case of a transmitted Gaussian 

beam, the two focal plane beams were found to also be Gaussian in shape (figure 

9).    Thus, for purposes of computer modelling, perhaps two Gaussian beams, 

instead of one, could be incorporated into the system description.    The given 

information on the variance and correlation length of the phase distortions 

could then be used to construct the appropriate far-field beam model required 

in the calculation. 

Because this may not be a convenient or easy modification to pursue, the 

4.    Peckham, L.N., and Davis, R.W., AFWL-TR-72-95, Air Force Weapons Laboratory 
(Rev.) 
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next question is how can a profile such as that shown in figure 9 be approxv 

mated by a single Gaussian function.    In spite of the shortcomings of this 

approach, something like the following could be attempted. 

Define a Gaussian beam to be used for the model as 

I»=^exp(-    ^ 2r2\ 
ml to* / 9 < \ ml 4 / (70) 

where m1 is a parameter used to describe the amount of energy lost to wide angle 

scattering, and m2 is a parameter used to describe the spread of the beam rela- 

tive to the diffraction limited spot size given by wf.   When ml = m2 =1, the 

beam is diffraction limited.    If the scale size of the phase fluctuations is 

much less than the diameter of the transmitting aperture, then all the energy 

will be scattered "out" of the main beam.    In this situation, the nondiffraction 

limited parameters would be specified as 

m, = expC-a^2) (71-a) 

m2 = 1.0 

If the scale size of the phase distortions is large compared to the trans- 

mitting aperture, then the far-field pattern resembles the pattern of a beam 

that has been distorted by simple jitter [see equation (22)].    For this extreme 

case, the nondiffraction limited parameters should be specified as 

m   = 1 
i 

i 

m   = — 
2      "f (71-b) 

when (a)]:)2 = (wi + 2 f2 WJ is the spot size of the spread beam. 

Specification of nij and m2 for these two special limiting cases is 

straightforward.    This was made true by virtue of the fact that in each case 

the beam was still Gaussian in shape.    For the multitude of cases that lie 

between these extremes, the irradiance profile will not be Gaussian.    The ques- 
tion becomes, how can a single Gaussian profile represent this in a manner that 
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recognizes the important beam characteristics.    Two parameters of interest that 

often are used to describe beam properties are the on-axis intensity and the 

integrated energy contained in a bucket of some specified radius.    Let 1(0) and 

P(u)f) represent these two quantities.    They can be determined either from a 

theoretical calculation or, if experimental data are available, from specific 

far-field beam measurements.    In terms of equation (70), then, the two resulting 

equations are 

m. 

P(u)f) 
m 

1(0)      ^ 
I0     " m| (72) 

i (l - exp(-2/m2
2)) (73) 

where the bucket radius used for the power equation was u)-.    Defining m   = M, 

it is easy to show that the following transcendental equation can be obtained. 

P(a)f)      I0 / 2\ 
17 • ifor M I1 - exp - R) (74) 

P(wfx      I0 
>n -rr^1 • ^ < 2.     Fi. Equation (74) will obtain a solution only when -p—'- • jrw, < 2.    Figure 16 

enables M to be determined after |__|f \ and f 1(0) i have been specified.    Once 
\po   /        ^o   / 

M has been determined, then 

mi = f^i- • M (75) 

m   = +yM 

It is easy to show that this definition of the Gaussian function (equation 70) 

reduces to the two extreme cases described earlier. 

Figure 17 shows the results of representing the actual nondiffraction 

limited beam profile as (1) a pure energy extinction due to wide angle scat- 

tering, (2) a simple smearing of the energy due to jitter-like distortion, and 
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(3) the combination of scattering and spreading given by equation (70).   The 
latter representation is seen to fall between cases (1) and (2). 

Equation (70) is only an approximate representation of a more complex 
irradiance pattern.    However, it does provide a model for the focal plane irra- 
diance distribution that is consistent with two characteristics that are often 
used to quantitatively describe high energy laser systems, the peak intensity, 
and the energy contained in a standard sized radius bucket.    These quantities 
could be obtainei either from the analytic results of the approaches described 
in sectior: II through IV or from experimental measurements taken directly on 
real laser systems.    A minimum adjustment is required to implement this model 
in most of the existing system codes available now. 
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SECTION VI 

CONCLUSIONS 

Most optical systems have performance characteristics that are less than 

diffraction limited.    To model these systems, one needs to study the effect of 

random aberrations on the focal plane irradiance characteristics.    The aberra- 

tions can arise from either random phase or random amplitude distortions.   While 

both sources of error are usually present in optical systems, it can be shown 

that phase aberrations usually produce the most serious far-field distortions. 

This report has addressed the effect of random phase distortions on the focal 

plane characteristics of optical systems. 

Consider a process that produces random phase distortions over an aperture 

of an optical system.    Assume that the process is stationary in time and is 

spatially homogeneous and isotropic.    Further assume that the quantities of 

interest are the average spatial characteristics of the far-field irradiance 

distribution.   Then the statistical nature of the process can be approximately 

characterized by its mean (which is independent of F) and by its covariance 

function (which is a function only of spatial separation in the aperture plane). 

For convenience, the system is assumed to be aligned so that the mean ^ = 0.0. 

Then, the average far-field irradiance distribution is completely characterized 

by the spatial covariance function C,(r) of the phase fluctuations. 

C,(r) can be any function that represents a physically realizable random 

process.    While this places some constraints on the nature of the function, its 

actual shape can vary markedly.    Nonetheless, some characteristics must always 

be present.    For one thing, C,(0) = cr? is the variance of the phase fluctua- 

tions.    Also, as r -► °°, C (r) -»■ 0, though not necessarily monotonically.    To 

illustrate the qualitative nature of the processes being studied, however, it 

was convenient to specify a particular form for this function.    For this report, 

a Gaussian covariance function was assumed, which of course implies that the 

spatial power spectrum of the phase fluctuations is also Gaussian in shape. 

While this diminishes the generality of this report, the qualitative dependence 

of the results for the average focai plane irradiance distribution still 

exhibits its characteristic dependence on the parameters of interest, the phase 

variance (a^) and correlation length {i ).    This is true despite the fact that 



AFWL TR-75-153 

the form of the nonaberrated beam was often taken to be Gaussian in shape in 

order to facilitate numerical  results.    The conclusions inferred by these 

results should still be appropriate to the more general problem of arbitrary 

optical system characteristics and arbitrary random phase aberrations.    The 

salient conclusions of this report then are the following: 

a. When the rms phase distortion is less than 0.1 wavelength, the average 

far-field relative maximum irradiance is not altered substantially by including 

the effect of a non-zero phase correlation length, though the complete irra- 

diance profile does show a marked difference in shape as when going from a very 

large correlation length (A-   » w.) to a very small one (il   « u).).    Nonethe- 
03+ 0 t 0 t 

less, for j^ >  10, only seconJ order changes occur in the average relative focal 
Q 

plane irradiance distribution.    Thus using equation (3) probably gives a very 

good representation of the far-field distribution. 

b. When the rms phase is greater than 0.1 wavelength, the relative size 

of the phase correlation length to the effective aperture diameter is very im- 

portant in determining the maximum average intensity, as well as the entire 

shape of the irradiance profile.   Nonetheless, for a„ < 0.4 wavelength, and 

■n^- > 2.0, a very good estimate can still be obtained for the maximum average 
o 

irradiance by again using equation (3).    Thus when the scale length of the 

phase distortions is less than one-fourth the diameter of the transmitting 

aperture, the physical process seems to be dominated by wide angle scattering. 

The conclusion is that equation (3) represents the results of the physical 

process quite well over a wide range of values of o. and t , but when these 

conditions are violated, the maximum relative irradiance dependence on the 

relative phase scale size can be very severe.    These results are of particular 

importance to physical processes that scale with wavelength, so that cr? 

[equations (1) and (2)] will be larger for shorter wavelength systems.    Local- 

ized random index of refraction fluctuations that can be treated as a thin 

phase screen are an example.    As such, systems operating at shorter optical 

wavelengths will be more apt to require the full analysis described in this 

report. 

c.    Attempting to account for the effects of the finite phase correlation 

length by using equation [-)) does not gain a significant improvement in the 

estimate of the far-field maximum average intensity when a0 < 0.3 and TA > 2, 
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0)4. 

though some improvement is observed for ^ < 2, then o0 < 0.2 (figures 4 and 5). 
o *' 

Nonetheless, the degree of improvement probai/iy does not warrant the use of the 

second term in equation (4).    In addition, this approach does not conserve 

energy nor does it provide a useful way of visualizing the characteristics of 

the physical process. 

d. The two (Gaussian) beam model described in section III.2 accurately 

represents the exact analysis, and furthermore it provides an easy way to obtain 

good estimates of the reduction In maximum irradiance and profile characteris- 

tics.    This approach can provide a possible system modelling scheme that would 

include the effects of finite phase scale lengths under the conditons of strong 

phase distortion. 

e. In lieu of a two beam approach, systems codes could use a model de- 

scribed by equation (70).    Though this form is not exactly correct, it does 

provide the user with a means or at least satisfying the two of the frequently 

used characteristics of nondiffraction limited beams; namely, reduction in peak 

intensity and power in a bucket.    Nonetheless, the shortcomings of this approach 

should always be considered. 

f. Inclusion of system jitter and multiple source aberrations have been 

demonstrated to be a realtively simple problem.    With some caution, the 

approximate two beam approach described in section IV.2 is probably the easiest 

to implement, and in addition, it provides a useful insight into the dependence 

of the final result on the respective sources of aberrations. 

In conclusion, the analysis of optical systems with strong random phase 

aberrations requires special attention to the phase correlation size.    Thv 

means that particular attention may have to be given to systems operating with 

shorter wavelength radiation.   This report has addressed some of these 

questions. 
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